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Abstract
We present a theoretical description of polaron band narrowing in oligo-acene
crystals due to electron–lattice interaction. The analysis is based on a model
which takes both local and nonlocal contributions to the electron–phonon
coupling into account. Different approximation schemes are discussed and
compared. The theory is supplemented by quantitative ab initio calculations
of the temperature dependence of polaron bandwidths in oligo-acene crystals
which show the important role of in-plane nonlocal electron–phonon coupling.

1. Introduction

An important class of organic semiconductors are molecular crystals of high purity. Besides
the overall technological potential [1–9], these crystals are interesting model systems for
fundamental studies of optical and transport properties in organic semiconductors. In contrast
to polymers, crystals of high purity do not suffer from structural disorder which makes it
possible to study directly the underlying intrinsic excitations and charge-carrier transport
mechanisms. Several fundamental experimental and theoretical studies have been performed
in recent years, e.g. on oligo-acene crystals such as pentacene [10–15]. Here, we present a
theoretical study of the temperature-dependent polaron band narrowing in oligo-acene crystals
due to electron–phonon interaction.

A milestone towards the understanding of the intrinsic charge-carrier transport
mechanisms in organic semiconductors has been an early paper by Holstein [16] who
studied the influence of electron–phonon interaction on bandwidths and mobilities for a one-
dimensional model crystal. In comparison to covalently bonded inorganic semiconductors,
organic molecular crystals exhibit weak intermolecular van der Waals bonds and, hence,
narrower electron bands and stronger electron–lattice interaction. As a consequence, polaron
effects become important and lead to a temperature-dependent band narrowing. For elevated
temperatures this may even result in a localization of the charge carriers and change the transport
mechanism from band-like conduction into a phonon-assisted hopping motion. Twenty years
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later, the interplay between band and hopping transport in organic solids was, indeed, observed
in naphthalene crystals [17, 18].

From the computational point of view, Holstein’s molecular crystal model has the
drawback that it can give only qualitative insight since it incorporates only the local electron–
phonon coupling which acts purely on-site, i.e. at the site of the electronic excitation. However,
it is well known, for example, from the work of Su et al [19] that in organic semiconductors the
nonlocal electron–phonon coupling, where vibrations influence the transfer of an excitation
between lattice sites, may also be very important. Consequently, a number of theoretical studies
on nonlocal coupling have been performed in the past [20–24], but only recently a solution
in analogy to Holstein’s result for local coupling has been found which—in combination
with ab initio calculations of the material parameters—has been utilized to make quantitative
predictions for the polaron band narrowing in real systems [25].

In this paper, we extend our considerations from [25] and describe an alternative derivation
of its main findings. From this, we obtain additional insight into the approximations involved
which may be valuable information with respect to future calculations of related quantities
such as the polaron mobilities. This paper is organized as follows. After this introduction, we
present in section 2 a theory of polaron band narrowing due to electron–phonon interaction.
In section 3, we apply this theory to oligo-acene crystals and compare the results to previous
approaches. Finally, a summary is given in section 4.

2. Theory of band narrowing due to electron–phonon interaction

Our theoretical description of polaron bandwidth narrowing is based on a mixed Holstein–
Peierls model for the interaction between electrons and phonons. Introducing operators a(†)

m

and b(†)

Q := b(†)
qλ for annihilation (creation) of electrons at site Rm and phonons with wavevector

q in the mode λ, respectively, our model Hamiltonian is

H =
∑
mn

Emna†
man +

∑
Q

h̄ωQ(b†
QbQ + 1

2 ), (1)

Emn = εmn +
∑

Q

h̄ωQgQmn(b
†
Q + b−Q). (2)

Here, electron–electron interaction has been neglected, which is justified in the limit of low
electron densities. The latter assumption is motivated by the typical situation in mobility
experiments where the charge carriers are injected into the sample at low concentrations. Due
to hermiticity and symmetry requirements, the parameters of the above Hamiltonian fulfil the
relations

h̄ωQ = h̄ω−Q, gQmn = gQnm = g∗
−Qnm, εmn = εnm, (3)

where ωQ, gQmn and εmn are the phonon frequencies, electron–phonon coupling values and
transfer integrals, respectively. Furthermore, we will henceforth assume all on-site energies
εmm to be equal, i.e. all molecules of the crystal are equivalent.

If the electron–lattice interaction is not taken into account (Emn = εmn) the electronic
bandwidths are determined solely by the transfer integrals. Here, we are interested in the
modifications of these quantities due to the electron–phonon interaction which, in general,
contains coupling terms of both local (m = n, Holstein model) and nonlocal nature (m �=n,
Peierls model). In order to calculate these modifications, the above Hamiltonian has to
be diagonalized which requires a disentangling of the electron and phonon operators in
equation (2). In comparison to the original Holstein model, this diagonalization procedure
is much more complicated in the presence of nonlocal coupling, even in the coherent limit as
explained below.
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For an approximate diagonalization of the Holstein–Peierls Hamiltonian, we apply the
following nonlocal canonical transformation:

H → H̃ = eS H eS†
, S =

∑
mn

Cmna†
man, Cmn =

∑
Q

gQmn(b
†
Q − b−Q). (4)

This transformation can be looked upon as a generalization of the local transformation
S = ∑

m Cmma†
mam used for the solution of the Holstein model but it is more complicated

since it involves exponential matrix operators [23–25]. Nevertheless, it allows us to calculate
the renormalization of the transfer integrals due to both local and nonlocal coupling, in analogy
to Holstein’s original approach.

Prior to the explicit evaluation of H̃ according to equation (4), it is instructive to introduce
analogously the transformed operators ã(†)

m = eSa(†)
m eS†

and b̃(†)

Q = eSb(†)

Q eS†
which may be

interpreted as annihilation (creation) operators of a polaron and a phonon of the distorted
lattice, respectively. Then, the transformed Hamiltonian H̃ can be immediately written down
by means of the relation

H̃ (ã(†)
m , b̃(†)

Q ) = H (a(†)
m , b(†)

Q ) (5)

which follows from the identity S† = −S. In order to express H̃ in terms of the original
operators a(†)

m and b(†)

Q , we employ the Baker–Campbell–Hausdorff theorem:

Ã = eS Ae−S = A + [S, A] + 1
2! [S, [S, A]] + 1

3! [S, [S, [S, A]]] + · · · . (6)

By virtue of the commutators

[S, am] = −
∑

n

Cmnan,

[S, [S, am]] = +
∑

n

(C2)mnan,

...

(7)

and [
S, bQ

] =
∑
mn

[
C, bQ

]
mn

a†
man,

[
S,

[
S, bQ

]] =
∑
mn

[
C,

[
C, bQ

]]
mn

a†
man,

...

(8)

we obtain from equation (6) the transformation rules

ãm =
∑

n

(e−C)mnan, (9)

b̃Q = bQ +
∑
mn

(b̃Q − bQ)mna†
man, (10)

where we introduced a compact matrix notation and defined b̃Qmn = (eCbQe−C)mn and
bQmn = bQδmn . Inserting equations (9) and (10) into (5), we obtain (again in the limit of
low electron densities) the transformed Hamiltonian

H̃ =
∑
mn

Ẽmna†
man +

∑
Q

h̄ωQ(b†
QbQ + 1

2 ) (11)

Ẽmn = ε̃mn +
∑

Q

h̄ωQ

(
b†

QδQ + δQb−Q + δQδ−Q − g̃Qg̃−Q

)
mn

, (12)
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where ε̃mn = (eCεe−C)mn and g̃Qmn = (eC gQe−C)mn .
In a previous work [25], equation (12) was simplified to Ẽmn = ε̃mn −∑

Q h̄ωQ(g̃Qg̃−Q)mn

by arguing that terms containing δQmn := (g̃Q + b̃Q − bQ)mn ≡ (g̃Q + b̃†
−Q − b†

−Q)mn are of
minor importance1. Here, we go beyond this approximation and take these terms partially into
account. In a first step, we insert the definition of δQmn into expression (12) and obtain as an
exact result for the on-site energies and transfer integrals of the interacting electron–phonon
system

Ẽmn = ε̃mn − �̃mn, �̃mn =
∑

Q

h̄ωQ

(
b†

QbQ − b̃†
Qg̃Q − g̃Qb̃−Q − b̃†

Qb̃Q

)
mn

. (13)

By means of the Baker–Campbell–Hausdorff theorem (6) and the identity
[
C, b†

QbQ

]
mn

=
−

(
gQb†

Q + g−QbQ

)
mn

, we can rewrite ε̃mn := ∑∞
l=0

1
l! ε̃

(l)
mn and �̃mn := ∑∞

l=0

(
1
l! − 1

(l+1)!

)
�̃(l)

mn

in terms of power series in Cmn where

ε̃(l)
mn = [C, [C, . . . , [C, ε] · · ·]]mn︸ ︷︷ ︸

l commutators

, (14)

�̃(l)
mn =

∑
Q

h̄ωQ [C, [C, . . . , [C,−gQ(b†
Q + b−Q)] · · ·]]mn︸ ︷︷ ︸

l commutators

. (15)

Apart from assuming the limit of low electron (polaron) densities, no approximations
have been made so far in the above calculations. However, the phonon operators still appear in
equations (13)–(15). Now, in close analogy to the original work of Holstein [16], we assume
that coherent band-like conduction prevails over inelastic phonon-assisted hopping transport,
which is a reasonable approximation if one is interested only in the polaron band structure.
Additionally, this assumption is motivated by the available experimental mobility data of Warta
and Karl [18] that indicate band-like transport for not too high temperatures. Therefore, we
replace Ẽmn by the thermal averages 〈Ẽmn〉 and, as a result, we obtain the desired approximate
diagonalization of the Hamiltonian H̃ where the electron and phonon operators are completely
disentangled.

For the explicit evaluation of the thermal averages, we start with the calculation of 〈ε̃mn〉
where only even orders

〈
ε̃(2k)

mn

〉
give non-zero contributions. For k = 1, we find exactly〈

ε̃(2)
mn

〉 = 〈[C, [C, ε]]mn〉 = −
∑

Q

(1 + 2NQ)[gQ, [g−Q, ε]]mn. (16)

As in [25], we proceed by taking into account only the dominant contributions in equation (16),
i.e. terms proportional to εmn , εnm and ε j j . As a consequence, we obtain〈

ε̃(2)
mm

〉 = 0,
〈
ε̃(2)

mn

〉 = εmn(−2Xmn), (17)

where we introduced the abbreviation

Xmn =
∑

Q

( 1
2 + NQ)GQmn, GQmn = |gQmm − gQnn|2 +

∑
k �=m,n

(|gQmk |2 + |gQnk|2
)
, (18)

and NQ = 〈b†
QbQ〉 denotes the phonon occupation number. Similarly, higher orders are

evaluated using a cumulant (or linked-cluster) expansion method [27] which approximately
leads to 〈

ε̃(2k)
mm

〉 = 0,
〈
ε̃(2k)

mn

〉 = εmn(−2Xmn)
k(2k − 1)(2k − 3) · · · 3 · 1, (19)

1 As becomes clear from a power series expansion, setting δQmn = 0 is actually equivalent to assuming [C, gQ]mn = 0.
Hence, one might be tempted to replace immediately also g̃Qmn by gQmn as we did in a preliminary conference
paper [26]. However, the present analysis reveals that this replacement is not favourable since it may lead to
overestimated bandwidths at high temperatures, cf figure 1.
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so that, by virtue of the identity (2k − 1)(2k − 3) · · · 3 · 1 = (2k)!
2k k! , the whole power series can

be summed up to give the compact result

〈ε̃mm〉 = εmm, 〈ε̃mn〉 = εmne−Xmn . (20)

Now, we proceed with the calculation of 〈�̃mn〉 where only odd orders 〈�̃(2k+1)
mn 〉 contribute.

For k = 0, we find exactly〈
�̃(1)

mn

〉
=

∑
Q

h̄ωQ

〈
[C,−gQ(b†

Q + b−Q)]mn

〉
= 2�mn (21)

with the definition

�mn =
∑

Q

h̄ωQ(gQg−Q)mn . (22)

Higher orders are calculated in the same approximate way as for 〈ε̃mn〉. This leads to〈
�̃(2k+1)

mm

〉
= 0,

〈
�̃(2k+1)

mn

〉
= 2�mn(−2Xmn)

k(2k − 1)(2k − 3) · · · 3 · 1, (23)

and, again, after summation of all terms of the power series, the final result can be brought
into a compact form:

〈
�̃mm

〉
= �mm,

〈
�̃mn

〉
= �mn

1 − e−Xmn

Xmn
. (24)

In conclusion, from equations (20) and (24), the on-site energies and transfer integrals in
the presence of both local and nonlocal electron–phonon coupling are obtained approximately
as 〈

Ẽmm

〉
= εmm − �mm, (25)

〈
Ẽmn

〉
= εmne−Xmn − �mn

1 − e−Xmn

Xmn
, (26)

where the quantities Xmn and �mn are defined in equations (18) and (22), respectively.
Compared to Holstein’s solution for purely local coupling, the polaron shift −�mm of the
on-site energies and the exponential renormalization e−Xmn of the transfer integrals are now
determined by both types of coupling. Furthermore, nonlocal coupling introduces an additional
shift of the transfer integrals which reflects the delocalizing effect inherent to nonlocal
coupling. As discussed below in more detail, this shift is relatively small and the values of the
transfer integrals (i.e. the bandwidths) are mainly determined by the temperature-dependent
renormalization factor e−Xmn . For the numerical calculations in section 3, it is important to
note that the shift found in equation (26) is somewhat different from our earlier findings of [25]
and [26]: 〈

Ẽmn

〉
= εmne−Xmn − �mne−Xmn , (27)

〈
Ẽmn

〉
= εmne−Xmn − �mn, (28)

respectively, where the terms δQmn discussed above were not taken into account (see footnote 1).
However, apart from this small difference, all three descriptions are equivalent.

For dispersionless phonons, we can replace NQ → Nλ = [exp(h̄ωλ/kBT ) − 1]−1 and
gQmn → gλmn

1
2
√

N
(e−iq·Rm + e−iq·Rn ), where N is the number of sites (molecules) and the

quantities Xmn can be explicitly evaluated from equation (18):

Xmn =
∑

λ

( 1
2 + Nλ)(Gλmm + Gλnn − g2

λmn), (29)

Gλ j j = g2
λ j j + 1

2

∑
k �= j

g2
λ jk. (30)
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In practice, the terms −g2
λmn in equation (29) will be of minor importance due to the comparably

large values of Gλ j j . Therefore, the quantity∑
λ

Gλ j j =: (geff)
2, (31)

may be looked upon roughly as an effective coupling constant. As a side effect, this explains
why even the much simpler Holstein model combined with a phenomenological (fitted)
coupling parameter works reasonably well in practice and predicts the correct qualitative
behaviour [28, 29]. However, for a quantitative ab initio modelling of polaron band narrowing,
the solution of the full Holstein–Peierls model has to be used, as demonstrated in [25].

3. Application to oligo-acene crystals

In this section, we apply our theory of band narrowing from section 2 to oligo-acene crystals, in
particular, naphthalene. Naphthalene crystallizes in a monoclinic structure with two equivalent
molecules per unit cell (herringbone stacking). The crystal is described by three lattice vectors
a, b and c, with a ⊥ b, b ⊥ c and a monoclinic angle β between a and c.

In order to obtain the parameters ωλ, εmn and gλmn which determine the temperature-
dependent bandwidths, we use the same strategy as described in [25]. First, we obtain the
equilibrium structure of the crystal by means of DFT–LDA calculations using the ab initio total-
energy and molecular dynamics program VASP [30]. For the resulting geometry (a = 7.68 Å,
b = 5.76 Å, c = 8.35 Å, β = 125.7◦), the intermolecular Γ-point phonon energies h̄ωλ and
polarizations eλ are obtained within a rigid-molecule approximation. Using a doubled Brillouin
zone corresponding to the lattice {Rm} of the equivalent molecules, we treat the six rotational
modes as three dispersionless optical phonon branches (h̄ω1 = 10.7 meV, h̄ω2 = 14.2 meV
and h̄ω3 = 17.4 meV). Analogously, the six translational modes are transformed into three
acoustical phonon branches which, in consistency with our model, are omitted. Second,
the values εmn are determined from a fit of the ground-state ab initio HOMO and LUMO
energy bands to a tight-binding model, including the on-site energy and the six most important
transfer integrals between nearest neighbours, i.e. {mn} = {0, a, b, c, ab, ac, abc} belonging
to Rm − Rn = 0,±a,±b,±c,±(a

2 ± b
2 ),±(a + c) and ±(a

2 ± b
2 + c), respectively. Third, the

electron–phonon coupling constants gλmn are determined by rotating the molecules according
to the polarizations eλ of phonon mode λ and fitting the corresponding ab initio band structure
to the full Holstein–Peierls tight-binding Hamiltonian.

In figure 1, we present the temperature dependence of the effective HOMO and LUMO
bandwidths in naphthalene crystals. We compare results obtained from equation (26) with
those of equations (27) and (28), with the latter two being results previously reported in [25]
and [26], as discussed in section 2. It can be seen immediately that all three approaches yield
very similar results, which is especially evident for the HOMO bands. This proves that the main
contribution to the polaron bandwidth narrowing arises from the exponential renormalization
factor e−Xmn of the transfer integrals whereas the small shifts related to the quantities �mn are
less important. The only significant difference is visible for the LUMO. If equation (28) is used,
the bandwidth at high temperatures is overestimated compared to the present work, whereas
equation (27) gives a very similar result. This shows that, for materials with significant nonlocal
electron–phonon coupling, the choice of equation (28) is not favourable whereas equation (27)
still yields accurate results. In contrast, if the nonlocal coupling is weaker as, for example, for
higher oligo-acenes such as (monoclinic) tetracene shown in the inset, the results for both the
HOMO and LUMO are virtually identical for all three approaches2. In conclusion, while the

2 For the structural relaxation of the higher oligo-acene crystals anthracene and tetracene, we used a computationally
less demanding semi-empirical approach, as described in [25].



A note on temperature-dependent band narrowing in oligo-acene crystals 2029

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

0 100 200

200

400 Tetracene
Naphthalene

LUMO

HOMO

 Ref. [26]
 Ref. [25]
 this workB

an
dw

id
th

 (
m

eV
)

Temperature (K)

HOMO

LUMO

Figure 1. Effective HOMO and LUMO polaron bandwidths versus temperature T for a naphthalene
crystal, calculated by means of three different approaches. Full curves: present theory. Broken
curves: [25]. Dotted curves: [26]. Inset: same but for a tetracene crystal.

present work, i.e. equation (26), provides the most sophisticated description of temperature-
dependent polaron bandwidths, the expression (27), which can be obtained in a conceptually
simpler and more straightforward manner [25], already yields very satisfactory results.

In order to demonstrate the importance of nonlocal electron–phonon coupling in
naphthalene crystals, we present in tables 1 and 2 the values of all electron–phonon coupling
constants for HOMO and LUMO, respectively. The five largest absolute values are printed in
boldface. There are two important findings. First, the most dominant contributions stem from
the two lowest lying modes whereas the third-lowest mode is already much less important. This
finding is also true for the higher oligo-acenes anthracene and tetracene (not shown). Second,
the nonlocal electron–phonon coupling (especially within the ab plane) is very important, both
for HOMO and LUMO. This can be nicely seen from the calculation of the effective coupling
constants (31) which, for the tight-binding model used here, are composed according to

(geff)
2 =

3∑
λ=1

(
g2

λ0 + 2g2
λab + g2

λb + g2
λa + 2g2

λabc + g2
λac + g2

λc

)
. (32)

In fact, the effective values that would be obtained if only local coupling was considered
(HOMO: 0.47, LUMO: 0.14) are significantly smaller than the total values of geff = 0.92
and 1.52. On the other hand, if the out-of-plane nonlocal coupling is neglected, the resulting
effective coupling values (HOMO: 0.88, LUMO: 1.33) are close to the total values, which
demonstrates the vital importance of in-plane nonlocal coupling. Finally, we mention that
this is also true for the higher oligo-acenes but there the dominance of the nonlocal coupling
compared to the local coupling is not so pronounced.

4. Summary

In summary, we have presented a theoretical description of temperature-dependent polaron
band narrowing in oligo-acene crystals. The analysis is based on an explicit solution of a
Holstein–Peierls model, taking into account both local and nonlocal electron–phonon coupling.
Extending our considerations from [25], we have provided an alternative derivation of the main
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Table 1. Electron–phonon coupling values for the HOMO band of a naphthalene crystal. The five largest absolute values are
printed in boldface. For further explanation see the text.

λ = 1 λ = 2 λ = 3
∑

λ(g
2
λ0 + 2g2

λab + g2
λb + g2

λa + 2g2
λabc + g2

λac + g2
λc) = ∑

λ Gλj j = (geff )
2

Local gλ0 −0.04 0.33 0.33 0.22 = 0.22 = (0.47)2

+ gλab −0.25 −0.25 0.05 + 2 × 0.13 = 0.48
nonlocal gλb 0.43 0.05 0.20 + 0.23 = 0.71
(in-plane) gλa −0.03 −0.24 0.01 + 0.06 = 0.77 = (0.88)2

+ gλabc 0.15 0.08 −0.06 + 2 × 0.03 = 0.83
nonlocal gλac −0.02 0.00 −0.05 + 0.00 = 0.83
(out-of-plane) gλc 0.01 0.09 0.02 + 0.01 = 0.84 = (0.92)2

= total Gλj j 0.36 0.32 0.16 = 0.84 = (0.92)2
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Table 2. Same as table 1, but for the LUMO band of a naphthalene crystal.

λ = 1 λ = 2 λ = 3
∑

λ(g2
λ0 + 2g2

λab + g2
λb + g2

λa + 2g2
λabc + g2

λac + g2
λc) = ∑

λ Gλj j = (geff)
2

Local gλ0 −0.08 0.09 0.05 0.02 = 0.02 = (0.14)2

+ gλab 0.11 −0.69 −0.11 + 2 × 0.50 = 1.02
nonlocal gλb −0.87 0.09 0.00 + 0.76 = 1.78
(in-plane) gλa 0.03 −0.05 0.01 + 0.00 = 1.78 = (1.33)2

+ gλabc −0.08 0.28 −0.08 + 2 × 0.09 = 1.96
nonlocal gλac 0.07 −0.18 −0.01 + 0.04 = 2.00
(out-of-plane) gλc −0.15 0.53 −0.05 + 0.31 = 2.31 = (1.52)2

= total Gλj j 0.83 1.44 0.04 = 2.31 = (1.52)2
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findings presented there. In particular, we focused on the effect of contributions previously
not taken into account and found from our ab initio calculations that they are, indeed, of
minor importance. This gives additional justification for the conceptually simpler method used
in [25]. Furthermore, we discussed the importance of nonlocal electron–phonon coupling in
order to quantitatively describe the temperature dependence of polaron bandwidths. Also, the
in-plane nonlocal coupling was found to play a pronounced role in naphthalene crystals.
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